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ABSTRACT

A method for calculating the geometric factor of cylindrical-

plate electrostatic energy analyzers with various detector geo-

metries is described. The effects of the fringe-field are

estimated. For a special simple case an exact geometric factor

is calculated enabling an estimate of the inaccuracies of the

approximations used in other cases. The results of some calcu-

lations are presented and a simple approximate expression for

the geometric factor is deduced.



1. INTRODUCTION

One of the most important reservoirs of energy in the Earth's mag-

netosphere is the population of trapped particles, predominantly protons

and electrons with energies from 10 eV to 100 keV. The solar wind which

controls the formation of the magnetosphere is also composed of particles

in this energy range. The measurement of low fluxes of such particles

from space vehicles required the development of new detection techniques.

Channel electron multipliersl, used for this purpose now for several years

with great success, provide no information about the energy of the par-

ticles. Hence energy analyzers, which allow only those particles within

a prescribed energy range to reach the detector, must also be used. The

most popular analyzers have been electrostatic analyzers with either two

concentric spherical2-4, or two coaxial cylindrical platess - 9 . Other

electrostatic analyzersl o -ll, and magnetic analyzersi2, have been used

successfully.

Curved plate analyzers have been used in the laboratory for many

years and many papers have publishedISl15, and continue to be published

analyzing their performance. In the laboratory the particle source is

usually discrete and the analyzer's most important properties are its

energy resolution and focusing action. In space use the source is dif-

fuse, extended and has a wide range of energies. Its important properties

are then its energy bandwidth and geometric factor. A different analysis

is required. In this paper thes- properties of cylindrical plate analyzers

are calculated theoretically.

Other authors 16 17 have described methods of calculating geometric

factors but none have the degree of completeness of that described here 



Using this method it is possible to allow for the precise shape of the

detector and if necessary for variations in efficiency across its sur-

face. This is an important advantage of the method when channel electron

multipliers are used as the detector. The effect of the fringing field

at the ends of the analyzer plates is estimated and the validity of

approximations used is checked.

Theodoridis and Paolini'6 in their calculation adapted a method

originally applied to spherical plate analyzers but it is doubtful

whether the trajectory equation they use is valid for a reason that is

discussed below. Reidler'sl7 calculation is based on a trajectory

equation similar to the one used here but like Theodoridis and Paolinii s

he cannot allow for the shape of the detector or the fringing field.

Other workers of the authors acquaintance have made unpublished calcul-

ations based on tracing a trajectory numerically through the analyzer.

The method requires extensive and time-consuming computation compared

with the much simpler method described here.

The method has been applied to a number of different practical

analyzers and from the results an approximate expression for the geo-

metric factor and energy bandwidth of any analyzer within a prescribed

range of the central angle is obtained. This enables a cylindrical

analyzer with any desired characteristics to be designed rapidly.

The following is a list of the symbols used most frequently. Others

are defined where used. The analyzer geometry is shown in Figures 1 and

12.
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r radial coordinate

r radius of surface at zero potential

p = r/ dimensionless radial coordinate

M radial position where K(p) = 1 (eq. 3.4)

9 angular coordinate measured from entrance to analyzer plates

0p sector angle of analyzer plates

1a angle between tangent and trajectory

Tp kinetic energy of circular orbit which is used as the unit of

energy for the following quantities.

E total energy of the particle

H particle energy in the plane perpendicular to the cylindrical

axis

R(p) kinetic energy of radial motion

K(p) total kinetic energy

T kinetic energy associated with azimuthal motion at p = 1

e,m charge and mass of the particle

L angular momentum of the particle

A analyzer plate spacing/mean plate diameter

x,m defined by equations 4.10

GF(E) energy dependent geometric factor

[GF] energy-integrated geometric factor at unit energy

B fractional energy bandwidth

Y,y,t, X are various dimensions of the analyzer/detector defined in

Figures 1 and 12

subscripts

',II (refer to motion perpendicular and parallel to the cylindrical

axis
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o,i refer to the outer and inner analyzer plates

1,2 refer to quantities calculated for outer and inner orbital

radial limits.

2. GENERAL CONSIDERATIONS

The directional intensity of particles in a distribution is

I(x, v, E) usually expressed in units of cm-2ster-leVsec
- 1

, where x

is a position vector and v is a unit vector in the direction of particle

-I
motion. The counting rate CR, in units sec , of an analyzer/detector

measuring particles in this distribution is

CR = I cos a g ( x, E) dSddE

where a is the angle of incidence of the particle on the element of

-- A
surface dS. The function g(x, v, E) has the value unity for values of

x, v, E corresponding to trajectories which strike the detector and zero

otherwise. It is used only as a device to express simply the limits of

integration over solid angle and energy. The surface integral is taken

over any surface which is crossed once and only once by each trajectory

reaching the detector. Usually this is the entrance aperture of the

analyzer.

The energy-dependent geometric factor is defined by

GF(E) = J g cos a dSdQ 2.1

in units of cm2 ster and the energy-integrated geometric factor by

[GF] =4 GF(E) dE 2.2
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where the units of [GF] are cm2ster eV. Both quantities are functions

of the geometry of the analyzer/detector only. Since each particle

striking the detector produces the same response the variation of I

within the range of acceptance of the detector cannot be measured. Hence

the observed intensity Iobs, given by

Iobs = CR/[GF]

is an approximation to the real intensity. If the energy-bandwidth is

large a better result may be obtained by integrating an assumed spectral

shape I'(E) over the energy-dependent geometric factor to find the mag-

nitude of the intensity A.

A = CR/ S I'(E) GF(E) dE

Alternatively, when an energy spectrum is measured with several

analyzers an iterative procedure can be followed by putting I'(E) =

Iobs(E).

Both GF(E) and [GF] are calculated here. From GF(E) the energy-

bandwidth B, defined to be the full-width at half maximum, can be found.

As already mentioned it is normal in calculating geometric factors

to take the surface integral over the entrance aperture of the analyzer.

Until crossing this surface the particles follow a trajectory which is

independent of the presence of the analyzer. Theodoridis and Paolini5

and Reidler6 tacitly assume the entrance to the plates to be equivalent

except for a change in the energy of particles entering the plates away

from the zero potential surface. This is not completely accurate. In



Figure 2 the trajectories of a group of particles through a two dimensional

analyzer are shown in a general way in configuration and velocity space.

At point P, in free space the particles occupy a contiguous volume ele-

ment in the four-dimensional phase space. According to Liouville's

theorem the volume will remain contiguous and the same size at all points

along the group of trajectories. At point P the volume is that filled

by all the particles crossing the line dxl, in angular range dcl, velocity

range dvl, in time dt, where dxl is perpendicular to the group of tra-

jectories.

dx1 dcl V 2 dv1 dt = dx2 dc2 V2 dv2 dt 2.3

where subscript 2 indicates point Q. An electric potential difference

0pQ exists between P and Q so that

½ mvl2 = mv22 + eOpQ

Differentiating,

v1 dvl = v2 dv2 2.4

From 2.3, 2.4

dx1 dl1 = N dx2 du2 2.5

where N=v2/v1 .

By using equation 2.5 the surface integral in equation 2.1 can be

taken over any suitable surface. The most convenient is the exit plane

from the analyzer plates, immediately in front of the sensitive surface

of the detector. It is then possible to allow for the particular shape
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of the detector although it is harder to allow for the shape of the

entrance aperture and any collimating structure. Since the collimator

is outside the fringing field, in which the trajectories are deflected

by an unknown amount, it cannot be allowed for accurately anyway. In these

calculations it is assumed that there is no obstruction to particles

near the entrance and that the only restrictions on the particles are

the curved plates and the sensitive surface of the detector. Analyzers

which meet this requirement have been used by the author.

The calculation for the three dimensional analyzer is simplified by

resolving the motion into two perpendicular surfaces. In each a geo-

metric factor with the dimensions of length times angle is calculated.

The total geometric factor is then approximately the product of the two

partial factors. This approximation is good for the small solid angles

normally found in electrostatic analyzers. The two surfaces chosen are

a plane perpendicular to the axis of the cylinder (the Z axis) and

the cylindrical surface (r = r) at zero potential between the deflecting

plates of the analyzer. Motion on the cylindrical surface is not affected

by the radial electric field between the plates. The geometric factor

is calculated in each surface by finding the extreme angles of incidence

at the detector surface of trajectories which pass through the analyzer.

Then from 2.1

6(GF) = N6s 1 cos d

-a2

where 6s is a line element of the detector surface.

8(GF) = N6s (sin al + sin a2) 2.6
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3. MOTION PERPENDICULAR TO THE CYLINDRICAL AXIS

The Hamiltonian H' for particle motion between the analyzer plates

in the Z=0 plane is

H' = pr2/2m + pe2 /2mr2 + eQlog(r/r)

where Q = (Vo - Vi) log (ro/ri)

and the r=r surface is at zero potential. It is assumed throughout that

the voltages on the plates are symmetrical, i.e., Vo = -Vi so that

r2 = rori

The extension to analyzers with nonsymmetrical voltages is discussed in

Section 8. Since (ro - ri) << r for most practical analyzers r w (ro + ri)/2.

9 is a cyclic coordinate in H' so that p. is conserved and may be

put equal to L. H' is also conserved and is equal to the total energy

of the particle, excluding motion perpendicular to the plane,

If the electric field was infinite in radial extent, and not limited

by the analyzer plates, the motion of all the particles would remain

bounded because as r - o, L2/mr2 - o and as r - c, eQlog (r/r) _ ,.18

The radial limits of an orbit, rK, are given by pi = 0

H' = L2 /2mrK2 + eQlog(rK r) 3.1

The particle's radial motion is oscillatory between the two solutions of

equation 3.1.
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If H' = L2 /2mr2 = eQ/2 it is readily shown that the particle is in

a circular orbit with kinetic energy Tp

Tp = L2 /2mr2 = eQ/2

It is a property of the cylindrical analyzer that Tp is independent of

the radius of the orbit. The Hamiltonian may be written in dimension-

less form as an energy equation

H = R + T/p2 + 2 log p 3.2

where R = ½ mr2 /Tp

T = L2 /2mr T p

H = H'/Tp

p = r/r

The parameters H and T are constants of the motion between the

analyzer plates. H is the total energy of the particle and is its kinetic

energy before it enters the analyzer for motion in the Z=0 plane, and T

is a function of the angular momentum L. Equation 3.1 becomes

H = T/ 2 + 2 1ogpK 3.3

When H = 1 the set of solutions of Equation 3.3 can be denoted

formally by

PK = plo(T) outer radial limit

= p2 0 (T) inner radial limit

As T -, 1, P10 - P20- If H ¢ 1 the solutions can still be written in terms

of P10 and P20 by putting
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H = 1 + 2 log M
3.4

T = T'M2

Then from (3.3)

1 = T ' + 2 log P)

pKa M

for which the solutions are

P1 = Mplo(T/ M 2)
3.5

P2 = MP 2 0 (T/M2 )

M is the radius where the kinetic energy of the particle is Tp, the

energy required. for a circular orbit. All orbits are geometrically

similar with the magnitudes scaled according to Equations 3.5. Some

values of pl(T) and P2 0(T) have been obtained by a numerical solution

of (3.3) and are listed in Table 1. The two right-hand columns of the

table show that

P10 " 1 + A(T)

'P20 ~ 1 = A(T)

where A(T) is the amplitude of the radial oscillation

As a quantitative check on the validity of this approximation the

quantity v has been plotted in Figure 3.

2 - (Plo + P20)

Plo - P20

It is the difference between the arithmetic mean of the trajectory

limits and the circular orbit radius expressed as a fraction of the

amplitude of the oscillation. In most practical analyzers the amplitude
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of the oscillation of allowed trajectories is less than the range covered

in Figure 3 in which v has a maximum value of 0.025. Using this approxi-

mation and recalling that the motion is oscillatory between these limits

a first approximation to the trajectory equation can be written

p = M (1 + A cos (KG + I)) 3.6

If A is a function of (T/M2 ) the trajectory shows the correct scaling

properties as in Equations 3.5. Hughes and Rojanskyl3 have shown that

the cylindrical analyzer focuses the particles at 9 = rrl// (1270 17').

If K = A7l the trajectory of Equation 3.6 has the same property. Consider,

following Hughes and Rojansky, particles entering the analyzer at 0 = 0

with p = 1, H = 1 at an angle to the tangent (i.e., non-zero A) then from

(3.6)

A cos m = 0

and.. m = (2n +1) n/2

At 0 = 7//lT, (1270 17')

p = 1 + A cos [(2n + 3) 7] = 1

for all values of A, where n is an integer. The sinusoidal form for the

trajectory equation, obtained here almost empirically, was derived originally

by Hughes and Rojansky, with the difference that their radial variable was

u p-1 , by an approximate solution of the differential equation of the

trajectory. Reidlerl 7 achieved the same result with an approximate inte-

gration of the equations of motion. Theodoridis and Paolini'6 approximate
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the trajectory with a circle. However, such trajectories focus at

9 = 1800. It seems unlikely that the approximation could give accurate

geometric factors, particularly its variation with 9p,if it fails to

reproduce the gross properties of the analyzer. The accuracy of the

sinusoidal approximation is estimated in Section (5).

4. CALCULATION OF GF±

Figures 4 through 6 illustrate, for different cases, the allowed

trajectories with the greatest angles of incidence (Cl1 , - 02) at the

detector surface. These trajectories are referred to as limiting tra-

jectories. All intermediate angles of incidence are allowed. The criteria

used to determine the limiting trajectory vary with the angle 0p of the

analyzer. Four cases are considered below.

1. When 9p > V75 each trajectory must have passed two radial turning

points between the plates. Only trajectories with pi < Po and P2 > Pi

are able to reach the detector. Figure 4 shows that when M > 1 the
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limiting trajectory for both 1l and a2 grazes the outer plate and that

al=a2. Similarly when M < 1 the limiting trajectory grazes the inner

plate. The angle of incidence of the limiting trajectory is given by

sin =( R(p)i½
K(p)

where K(p) is the particle's kinetic energy at p. p is the radial position

of a detector element. N = /K-Hi , therefore from 2.6

8(GFI) = 2 r dpR( i) 4.1

From 3.2 and 3.3 for trajectories which graze the outer plate

Rl(p) = (H/p2 )(p2 -p02) + (2/p2 )(p0 2 log Po - p2 log p) 4.2

When the trajectory grazes the inner plate subscript o is replaced by i

to give R2 (p). No approximation is involved in this equation for R(p).

2. When Gp = nTT/ each trajectory passes one and only one radial

turning point between the plates. From Figure 5 it is clear that the

limiting angles of incidence are given by

N- sin c1 = (Rl(P))½ 4.3a

N( sin )2 = 4.3b

Using Equations 4.3 in 2.6 enables GF± to be calculated without approxi-

mation when Gp = TT/VP.
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3. When rr/2 /< 0p < <//J- some trajectories pass through the analyzer

without reaching a turning point. Referring to Figure 6, one limit is

always set by a trajectory which grazes a plate at its turning point.

When p > M it grazes the outer plate and oil is given by (4.3a) and when

p < M it grazes the-inner plate and a2 is given by (4.3b). In some cir-

cumstances, discussed later, the other limit is set by a trajectory which

grazes a plate at the entrance and never passes a turning point between

the plates. An example is shown in Figure 6. The approximate trajectory

equation must be used to find the angle of incidence.

4. For the fourth case, analyzers with 9p < n/2 IT, both limits

may be set by trajectories grazing a plate at the entrance. One limit,

but never both simultaneously, can be set by a trajectory reaching a

turning point.

In this -paper the geometric factor of analyzers with n/2 /7 < p p

·rr/ vT, the third case, is calculated. The method may be extended equally

well to any of the other cases.

Using the approximate trajectory Equation (3.6) the angle of incidence

is

a = tan $ MA sin (/ 7p + )) 4.4

When the limiting trajectories graze the plate at a turning point,

Po = M(1+A)
or 4.5

Pi = M(1-A)
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Approximating N sin a - tan a' (an approximation whose accuracy is

considered later) from 4.4, 4.5

N sin c1l = ((Po - M)
2
- (P - M)2)- 4.6a

N sin o2 /J~ ((Pi - M)2 - (p - M)2 )2 4.6b

When the limiting trajectory grazes the outer plate at the entrance, 0 = 0

and

Po = M(1+A cos A) 4.7

at 0 = 9p

p = M(i+A cos G( 7 0p + l)) 4.8

From 4.4, 4.7, 4.8

N sin = • ((Po - M) - (p - M) cos (/7 9 P) 4.9a

(H \sin (v/T Op) 

Similarly when the trajectory grazes the inner plate

N sin 
2

= ((Pi - M) - (p - M) cos v' Qp) ) 4.9b
N sin a~2 = p/ i sin i/-2 p

Equations 4.6, 4.9 may be simplified by putting (po-1) : (l-pi) = A and

(M-1)/A = m

(p-l)/A = x

a7 A/p /-i = C
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then

N sin c1 = C ((1-m)2 - (x-m)2)½ 4.10a

or C ((l-m)- (x-m) cos J7 Gp 4.10b
sin Ji 0p

N sin 02 = C((l+m)2 - (x-m)2)
½

4.11a

or = C -(l+m) - (x-m) cos /i 9 p )4.11b
sin v1E Gp

The next problem is to find out when the limiting trajectory grazes

the plate at its turning point and when it grazes the entrance. Figure 7

illustrates a trajectory which grazes the outside plate both at its

turning point and at the entrance. For this trajectory both expressions

4.10a,b give the same value for N sin c 1. Then

x-m = (l-m) cos J/ 9 p 4.12a

This curve in x,m space is the boundary between the regions in which

4.10a,b are used. If x-m > (l-m) cos i: / 4.10a gives the limiting

trajectory. Similarly the boundary between the regions of validity for

4.11a,b is

x-m = - (I+m) cos VE Up 4.12b

If x-m > - (l1m) cos /2 p 4.11b is the correct expression.

As m increases beyond the value given by 4.12a the value of N sin al

given by 4.10b becomes negative. An example of such a trajectory is shown

in Figure 8. Eventually

N sin al + N sin 2 = 0
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when from 4.10b, 4.11a

x-m = (l-m) cos VJ 90p - 2 vm_ sin / Gp 4.13a

This value of m marks the upper energy cut-off of the analyzer for

the particular value of x. Similarly at the lower energy cut-off, from

4.10a, 4.11b

x-m = -(l+m) cos / %p + 2/Em sin /7 Gp 4.13b

Figure 9 shows curves 4.12, 4.13 in x,m space for three values of

0p. Also included are the lines x = +1 which represent the surface of the

plates. Table 2 lists the correct expressions for al a02 in each region

of the diagram. When Op = T/ll curves 4.12a, 4.12b are identical with

4.13a, 4.13b respectively and there is only the region B in the diagram.

This is case 2 discussed above. When 9p = r/Z/ 7T curves 4.12a and 4.12b

are identical and region B disappears. At smaller values of Gp, 4.12a

and 4.12b change positions.

5. THE ACCURACY OF THE APPROXIMATE TRAJECTORY EQUATION

The trajectory equation is required in the analysis to find those

limiting trajectories which graze a plate at the entrance. For consistency

it has been used throughout to find the angles of incidence of all the

trajectories. The path difference between the actual and approximate

trajectories cannot be calculated easily but the angle between the tra-

jectory and the tangent to the cylindrical surface can be calculated

exactly from 4.3 and from the approximate equation. When H=l, from 4.2.

sin22a = R(p) = 1 - Po2(1-2 log po)

K(p) P 2 (1-2 log p)
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and from 4.6 tan a = X A (l-x2)i/p

If the two values of a(p) were identical the trajectories would

have to be identical. The value of a(p) given by each expression is

plotted in Figure 10 for a trajectory with a relatively large amplitude

oscillation (pl - P2) z 0.2. The greatest fractional difference except

near the inner limit, is of the order of 0.1. In Table 3, N sin a is

calculated for the same trajectory from Equations 4.3 and compared with

tan a obtained from Equation 4.6. It was found that tan a gave closer

agreement for the angles of incidence than any other simple function.

From the scaling properties of the real and approximate solutions all

trajectories with the same relative amplitude have the same relative

difference between real and approximate trajectories. Further calculations

show that trajectories with smaller oscillations agree more closely. The

trajectory examined here is an extreme case for most practical analyzers.

For one special case the geometric factor can be calculated without

using the trajectory equation. All the limiting trajectories of an

analyzer with go = r/'2_ graze the plates at turning points. Then Equations

4.2, 4.3 can be used throughout. Table 4 lists the energy-integrated

geometric factor [GF±] for four such analyzers calculated both ways. Even

for A = 0.1 the difference is less than 1%. When the energy-dependent

geometric factor is examined slightly greater differences are found. The
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quantity e(H) is defined as

¢(H) = 2 GFEI( H) - GFAI(H)\
GFEI(H) + GFAI(H)

GFEI is the exact and GFA± the approximate value of GF1(H). c(H) is

shown in Figure 11 for the analyzers of Table 4. Except for energy

range (marked in the diagram) all the curves are identical. They are very

nearly linear and anti-symmetric, hence the small effect on [GFI].

6. MOTION PARALLEL TO THE AXIS

Since there is no electric field parallel to the Z-axis the particle

velocity in the Z direction remains constant. If the plate spacing is

small the angular velocity about the axis is nearly constant so that the

motion projected on the r=r surface (Figure 12) can be approximated as

that of a particle with a constant pitch angle (TT/2 - X). The length of

a detector element width r dp parallel to the axis is y(p). The distance

between the entrance aperture and the detector around the curve is /(p).

Its variation with p is ignored here because the separation of the plates

is small. If the length of the entrance aperture parallel to the Z-axis

is Y then the amount of the strip y accessible to particles with pitch

angle (rr/2 - X) is Y(X) where

y(x) = y if Itan XI < (Yi)

Y(X) = (Y+y -tanx) if Y~ < Itan Xl < 
Y

and Y(X) = 0 if Itan XI > X 6.1
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If y is symmetrically placed with respect to the entrance aperture,

as is assumed here then

6(GF//) = 2y (X,P) cos X dX 6.2

If y is not symmetrical the calculation is more complicated but not

changed in principle.

If the detector efficiency is less than unity, and perhaps variable

across its surface, it can be allowed for by an extra factor in Equation

6.2.
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7. TOTAL GEOMETRIC FACTOR

An element of the total geometric factor is

6(GF) = 6(GF1 ) 6(GFf)

Writing equation 4.10 and 4.11 in the form

N sin cK = GK (X,m)

then

8(GF) = 2 J? P2 r GK(X,m)
K(GF) =2 y(x,X) cos X dXdx 7.1

The total kinetic energy of the particle outside the analyzer is E

and its component associated with motion in the plane perpendicular to

the axis is H,

H = E cos X

The geometric factor at constant E is required so that 7.1 must be inte-

grated with E constant. m is a function of H and thus X in the integration.

In general 7.1 must be integrated numerically although in some simple cases

part of the integration can be carried out directly. A computer program

has been written to perform the integration. Some results are given in

the next section.

A program listing in FORTRAN is available.
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8. RESULTS

1. The energy bandwidth, defined as the full-width at half-maximum of

GF(E) (see Figure 15) in units of Tp the kinetic energy of a circular

orbit, is proportional to A. This is obvious from the form of Equations

4.10, 4.11. The variables m and H are functions of energy and determine

the bandwidth of the integrated expressions. The dependence on H is

weak and m is the dominant variable. Since m (JH-1)/A the energy

bandwidth is proportional to A.

2. The bandwidth B is a strong function of Op as is shown qualitatively

by Figure 9. The quantity B/A has been plotted in Figure 14 for the

analyzers listed in Table 5. The straight line fitted to the points

on a logarithmic scale shows that in the range 600 < 0p < 1250 the

bandwidth may be approximated by

B/A = 2.36 x 105 9 -2.43

3. The bandwidth is only weakly dependent on detector geometry. In Table

5 examples 8, 15, 16, 17 differ considerably in the detector geometry

(see Figure 13) yet B/A varies only from 3.90 to 4.16.

4. Table 5 also lists [GF], and [GF]/B. Examples 1 through 14 which have

identical detector geometry differ in the value of 9p. The peak value

of GF(E) changes slightly as is shown in Figure 15 in which GF(E) is

plotted for two extreme cases. The values of [GF]/B in Table 5 show

that

[GF] - B 8.2

for these examples. [GF] in the table is given for unit energy. At

other energies the numerical value is Tp times [GF]. If Tp is in keV

the units of [GF] are then cm2sterkeV.
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5. [GF] is approximately proportional to the area of the detector. This

is demonstrated by examples 8, 15, 16 in Table 5 which have identical

detectors, mounted in different radial positions (Figure 13). [GF]

and B are very nearly the same in all three cases. Hence a given

area contributes the same to [GF] whatever its radial position. There

is a small change in the energy at which the peak value occurs. These

examples also show that misalignment of the detector in the construction

of a unit has only a small effect on its performance, as long as it

remains entirely between the plates in its radial position.

6. The angular response parallel to the cylindrical axis may be approxi-

mated by YR if it is small, and from-7.1 it is clear that [GF] a A2 .

The results of this section can be combined by writing

[GF] = K A B A Y/X 8.3

Tp

where A is the detector area, B is given by 8.1 and K is a proportion-

ality factor whose value and constancy remain to be determined. Its

value is listed in Table 5. It ranges from 2.27 to 2.77 with most

values lying between 2.50 and 2.70. Using a value of 2.6 for K in

Equations 8.1 and 8.3, B and [GF] can be estimated to within about 10%

which is adequate in the design stage of an experiment.

7. The results can be adapted for analyzers with non-symmetric plate

voltages. If the potential of the mid-plane is Vm, in the fringe

field the particles are first all accelerated by Vm and then enter an

analyzer with symmetric voltages. Using Equation 2.5

GF (E) = (E eVm)½ GF(E - eVm)

where GF'(E) is the required geometric factor.
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8. Both Reidlerl7 and Theodoridis and Paolinil6 give numerical examples

of the results of their calculations. In each case the detector

covers the complete gap between the plates. The numerical specifi-

cations of their analyzers has been read into the computer program

used to obtain the results above thus allowing a comparison between

the three methods. The voltage between the plates is such as to

give Tp = 1 keV in all the examples.

Reidlerl7 calculates [GF] for analyzers with 9p = 640 and 1270 but

otherwise identical. He finds at Gp = 640 [GF] = 3.07 x 10
-
3 cm2

sterkeV and at 0p = 1270 [GF] = 2.04 x 10- 4 cm2 sterkeV. Using our

method with his dimensions gives

at Qp = 640 [GF] = 1.06 x 10-3 cm2 sterkeV

and at 9p = 1270 [GF] = 1.87 x 10
-
4 cm2 sterkeV.

At 1270 there is reasonable agreement but the difference at 640 is

considerable. However, Reidler states that the results at 640 are

doubtful because some of the assumptions made are less accurate for

smaller angles.

Theodoridis and Paolini only give a calculation for Up = 1800 but by

using a curve published by them elsewhere2 0 it may be adapted to

1270. For their analyzer, with dimensions somewhat greater than

Reidler's, they get

[GF] = 1.9 x 10
-
2 cm2 sterkeV

Using our method gives

[GF] = 3.23 x 10- 2 cm2sterkeV
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Reidler's results may also be applied to this analyzer giving

[GF] = 3.36 x 10-2 cm2 sterkeV

Theodoridis and Paolini's result differs significantly from the other

two. They also comment on the high energy tail in the response of

the cylindrical analyzer in comparison with the spherical analyzer.

However, this is not a property of the cylindrical analyzer but

rather the abnormally large angular response parallel to the cylindrical

axis of their analyzer. With a narrower angular response the response

curve is more nearly symmetric, as is shown in Figure 15.
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9. FRINGE FIELD EFFECTS

Throughout the analysis the electric field has been taken to be the

ideal, radial field, inversely proportional to r and limited to the

region between the plates. The fact that the real field is different

modifies the trajectories and therefore also affects the geometric factor.

The real field differs from the ideal field near the ends of the analyzer

plates. In order to simplify estimates of the effect of the fringing

field at the entrance it can be separated into three different parts.

Although this is neither real nor adequate for a proper calculation of

the particle trajectory in the fringe field it suffices for a calculation

of the order of magnitude of the deviation from the ideal.

At the entrance to the plates there is a tangential field which either

accelerates or decelerates the particles. If the particle does not enter

the plates at the radial position where the potential is zero it's kinetic

energy is changed. This effect is allowed for in the analysis simply by

taking account of the difference in potential.

The radial field just inside the plates is weaker than the ideal.

Morse and Feshbach'9 give a solution for the electric field near the edge

of a semi-infinite parallel plate capacitor which may be used to estimate

the field near the end of the analyzer plates. The radial field along the

midplane is plotted in Figure 16. It reaches 95% of the ideal value .3d

from the end (d is the distance between the plates). The magnitude of the

effect on a particle trajectory can be calculated by considering the field

to exert an impulse on a particle as it traverses this short distance .3d

between the plates.
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e .3d
Impulse I =J eEldt = * El dx 9.1

The particle is assumed to be moving along the midplane as if in a

circular orbit. Ideally it is deflected through an angle 68 = I/mx = .3d/r

Integrating the curve in Figure 16 as in Equation 9.1 shows that the

actual impulse is only .88 times the ideal impulse i.e., the trajectory

is deflected only .88 68. The deviation from ideal is .12 89 which

gives a maximum radial displacement of .026 times the plate spacing. This

displacement affects the geometric factor by changing the limiting trajec-

tories which graze the plates at the entrance. The effect is so slight

that it may be ignored.

Outside the plates there is a radial electric field where ideally

there is none. The total impulse as the particle enters the analyzer is

greater than the ideal impulse. There is a net deflection of the trajec-

tories towards the inner plate. This has no effect on the geometric

factor unless there is some structure near the entrance which intercepts

the trajectories. For these theoretical calculations to be accurate the

entrance aperture (as in Figure 1) must be wider than the plate spacing

to allow for the deflection in the fringing field.

The trajectories are not all deflected by the same amount. The effect

of the relative deflections is allowed for by the factor N in Equation 2.5.

No other published calculations of geometric factors have allowed for the

net or relative deflections in the fringe field. At the exit from the

analyzer near the detector surface the electric field also differs from

the ideal. In this region few limiting trajectories are affected but the
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position at which particle strikes the detector may be changed. Deviations

are of the same order of magnitude as at the entrance and are thus much

smaller than inaccuracies of the approximations.

In conclusion, as long as the entrance aperture does not obstruct

particles which would otherwise pass between the plates the fringe field

has only a small effect on the geometric factor.
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TABLE CAPTIONS

1. Numerical solutions for the radial turning points (equation 3.3) whn H=1.

2. The expressions to be used in calculating the geometric factor in

regions A, B and C of Figure 9.

3. A comparison between N sin a calculated by the exact expression and

tan a calculated for the approximate trajectory. For this trajectory H=1, T=0.98.

4. The integrated geometric factor [GF] of 1270 analyzers calculated

exactly and using the approximate trajectory equation.

5. The results of calculations of the geometric factor and energy band-

width of various practical analyzers.



TABLE 1

T

0.96

0.97

0.98

0.99

P 10

1. 138

1.120

1.098

1.070

1.0

P20

0.855

0.875

0.898

0.928

1.0

I-P 2 0

.145

.125

.102

.072

01.00

P10-1

.138

.120

.098

.070

0



TABLE 2

Region Nsinol Ns ino2

4.10a 4.11 lb

4. 10a 4. 11a

4.10b 4.11la

A

B

C



TABLE 3

p

.9

.92

.94

.96

.98

1.00

1.02

1.04

1.06

1.08

1.10

Nsinc

.036

.090

.116

.132

.141

.143

.141

.132

.115

.087

0

tan a

0

.085

.113

.130

.139

.141

.139

.130

.113

.085

0



TABLE 4

[GFl] (cm-radian x 104)
r
i

ro (cms) exact approximate

.975 1.025 1.5768 1.5768

.950 1.050 12.631 12.633

.925 1.075 42.829 42.868

.900 1.100 102.07 102.24



op

degrees

1 125

2 120

3 115

4 110

5 105

6 100

7 95

8 90

9 85

10 80

11 75

12 70

13 65

14 60

15 90

16 90

17 90

18 60

TABLE 5

[GF ]

cm2 ser
A B B/A x 10

.05

.05

.05

.05

.05

.05

.05

.05

.05

.05

.05

.05

.05

.05

.05

.05

.1

.025

.101

.110

.121

.130

.144

.160

.178

.204

.235

.274

.323

.390

.477

.592

.195

.206

.416

.280

2.02

2.20

2.42

2.60

2.88

3.20

3.57

4.08

4.70

5.49

6.46

7.80

9.54

11.8

3.90

4.12

4.16

11.2

.482

.524

.569

.623

.687

.765

.860

.978

1.125

1.311

1.511

1.867

2.294

2.892

.884

1.024

36.10

1.525

[GF ]/
x 10

4.77

4.76

4.71

4.80

4.76

4.78

4.82

4.79

4.79

4.79

4.69

4.79

4.81

4.81

AY/
cm2 radian

x 103

Detecter

K Fi. 13

3.70 2.76

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

3.70

32.9

7.86

2.70

2.64

2.61

2.56

2.53

2.51

2.50

2.51

2.53

2.49

2.61

2.67

2.68

2.27

2.63

2.61

C

C

C

C

C

C

C

C

C

C

C

C

C

C

e

d

f

2.76 b

.0254 .192 7.56 .12219 70 .928 2.64 a



FIGURE CAPTIONS

The basic geometrical definitionsof the analyzer and detector

combination.

The motion of a group of particles through a two-dimensional

analyzer shown in a general way. The region of phase space

occupied by the particles is shown shaded in the pair of dia-

grams at each point P, Q.

The quantity v defined in the text is a measure of the accuracy

of the approximation p1 0 - 1 = 1 - P20. For most orbits in

practical analyzers T > 0.96.

In this diagram and subsequent diagrams through Figure 8, the

analyzer plates are shown as parallel straight lines with the

distance between exaggerated greatly. The trajectories can

then be shown as sinusoidal curves. The detector is shown at the

radial position p.

The limiting trajectories in an analyzer with Qp = r/ i.

The limiting trajectories in an analyzer with 9p between 2 3/2 

and 2-1/2 . One trajectory grazes a plate at the entrance

aperture and the other grazes a plate at its radial turning

point.

This diagram shows the limiting trajectory which grazes a plate

at the entrance and at its radial turning point.

The limiting trajectory when M > po and N sin al is negative.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.
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Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

This diagram illustrates the region A, B, C in x-m space where

the various expressions for N sin a must be used. The correct

expressions are listed in Table 2. The bounding curves are

(i) given by equation 4.13b, (ii) by 4.12b, (iii) by 4.12a,

and (iv) by 4.13a. The coordinate m is a function of energy

so that the extent parallel to the m-axis is an indication of

energy bandwidth. The coordinate x indicates the radial

position of a detector element. The lines x = + 1.0 are the

analyzer plates.

The angle between the trajectory and a tangent to the cylindrical

surface for both the real trajectory and the approximate tra-

jectory as a function of radial position.

The quantity 6 (defined in the text as a.measure of the dif-

ference,between exact and approximate values of GF(H) as a

function of H. The limits marked on the diagram are the energy

limits for analyzers with the-indicated values of A.

A particle trajectory projected on to the cylindrical surface

shown flattened in the diagram.

The shapes and positions of detectors relative to the analyzer

plates for the examples listed in Table 5. The detector's

sensitive surface is shown shaded.

Energy bandwidth as a function of the sector angle %p of the

analyzer.

The energy-dependent geometric factor for two extreme values

of 0p.



Figure 16. The fringe field at the edge of a semi-infinite parallel plate

capacitor. E is the radial field at the midplane between the

plates. Eo is its ideal value.



IETECTOR

VIEW AA

i

Y

_ _ . . _ _~~~·

i-- ENTRANCE APERTURE

FIGURE 1

A

8r



ENTRANCE
APERTURE

P

ANALYZER

DETECTOR

Q

h'
V,

VELOCITY VELOCITY

FIGURE 2

8a2

SV2 X



.03 

H= l
.02

.01

.96 .97 .98 .99 1.00
T

FIGURE 3



(a) M>I OUTER PLATE

M

Pi

M<I

INNER PLATE

127017'
25434'I
254°34 '

e
FIGURE 4

(b)
Po"

Pi

M

0
I



INNER PLATE

127 °0 17'-

FIGURE 5

Po
c<-

M

PiI



OUTER PLATE
p

0

M - - - -- -- - -

pc

pi

FIGURE 6

--- -- - -m- -m - -

INNER PLATE



OUTER PLATE

INNER PLATE

FIGURE 7

Po

M-
pE

P
'i



M -- - - -- -- - -- -
A A _ _ _ a A D O 

a,

INNER PLATE

FIGURE 8

po

p c

pi



8p =700

m

ep 90 °

X

I i v)

ep =127 °

7-- x= 1.0

B

I 2
m

FIGURE 9

-5

x = -1.0



ANGLE BETWEEN
TRAJECTORY AND
TANGENT DEGREES

.4 .6
RADIAL POSITION

FIGURE 10

10 'X



E

FIGURE 11

.075 1.03

-.01

-.02

-.03

H
1.15



ENTRANCE ANALYSER DETECTOR

1'

FIGURE 12



b

inner
d0

f

outer
e

,J

Icm
FIGURE 13

a

C

!

0



90 ° 1000 1100 I
ep

FIGURE 14

+

10

5

2
700 800



GF(E)x l 4

.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5

E/Tp
FIGURE 15

6

FWHM



E/Eo

.8

.6

.4

.2

-1.0 0 1.0

x
FIGURE 16

2.0


